Математическая логика

Математическая логика
Математическая  логика

Основы математической логики.

Данный урок предназначен для учащихся 11  классов для более глубокого изучения курса «информатики и итк».

На страницу урока →

Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем, которые лежат в основе работы любого компьютера.

Суждения в математической логике называют высказываниями или логическими выражениями.

Логическое выражение — это символическая запись, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).
В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно.

Обозначаются логические переменные буквами латинского алфавита.

Построение таблиц истинности для логических функций

 Логическая функция — это функция, в которой переменные принимают только два значения: логическая единица или логический ноль. Истинность или ложность сложных суждений представляет собой функцию истинности или ложности простых. Эту функцию называют булевой функцией суждений f (a, b).

Любая логическая функция может быть задана с помощью таблицы истинности, в левой части которой записывается набор аргументов, а в правой части — соответствующие значения логической функции.

При построении таблицы истинности необходимо учитывать порядок выполнения логических операций. Операции в логическом выражении выполняются слева направо с учетом скобок в следующем порядке:

1. инверсия;
2. конъюнкция;
3. дизъюнкция;
4. импликация и эквивалентность.

Алгоритм построения таблицы истинности

1. Определить количество наборов входных переменных — всевозможных сочетаний значений переменных, входящих в выражения, по формуле: Q=2n , где n — количество входных переменных. Оно определяет количество строк таблицы.
2. Внести в таблицу все наборы входных переменных.
3. Определить количество логических операций и последовательность их выполнения.
4. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности.

Чтобы не повторить или не пропустить ни одного возможного сочетания значений входных переменных, следует пользоваться одним  способов заполнения таблицы.

 Каждый набор значений исходных переменных есть код числа в двоичной системе счисления, причем количество разрядов числа равно количеству входных переменных. Первый набор — число 0. Прибавляя к текущему числу каждый раз по 1, получаем очередной набор. Последний набор — максимальное значение двоичного числа для данной длины кода.

Например, для функции от трех переменных последовательность наборов состоит из чисел:

000
001
010
011
100
101
110
111

Логические функции и их преобразования. Законы логики

Для операций конъюнкции, дизъюнкции и инверсии определены законы булевой алгебры, позволяющие производить тождественные (равносильные) преобразования логических выражений.

Законы логики


1. ¬¬ А <=> A закон двойного отрицания;
2. A&B <=> B&A коммутативность конъюнкции;
3. AVB <=> BVA коммутативность дизъюнкции;
4. A&(B&C) <=> (A&B)&C ассоциативность конъюнкции;
5. AV(BVC) <=> (AVB)VC ассоциативность дизъюнкции;
6. A&(BVC) <=> (A&B)V(A&C) дистрибутивность конъюнкции относительно дизъюнкции;
7. AV(B&C) <=> (AVB)&(AVC) дистрибутивность дизъюнкции относительно конъюнкции;
8. A&A <=> A
9. AVA <=> A
10. AV¬A <=> И закон исключенного третьего;
11. A&¬A <=> Л закон непротиворечия;
12. A&И <=> A
13. AVИ <=> И
14. A&Л <=> Л
15. AVЛ <=> A
16. ¬(A&B) <=> ¬ A V ¬ B законы де Моргана;
17. ¬(AVB) <=> ¬ A & ¬ B
18. A => B <=> ¬ A V B замена импликации.

Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.

Вопросы для самоконтроля

  1. Основные логические операции: конъюнкция, дизъюнкия (оба вида), отрицание, импликация, эквивалентность. Примеры логических выражений.
  2. Таблица истинности. Примеры. A and not A; A or not A.
  3. Законы логики.

Опубликовано: 14.05.2016 г.